

WATER QUALITY

Utra Mankasingh
University of Iceland

The combination of *aqua*culture and hydro*ponics*, *aquaponics*, is a resource efficient closed loop food production system, mimicking nature itself.

Water quality in aquaponics

The water quality on each part of the system affects the other

Balance: Needs of the fish balanced with needs of the plant

Water quality could be measured at several points depending on WHY measured

PARAMETERS TO BE MEASURED AND WHY

- pH , Temperature
- alkalinity
- DO
- ammonia/ammonium
- nitrate/nitrite
- BOD/COD
- phosphate

Note: ammonia is pH, temperature and life-stage dependant

- pH
- alkalinity
- DO
- ammonia/ammonium
- nitrate/nitrite
- phosphate
- macronutrients: K, Ca, Mg
- Fe, B
- BOD/COD

- * pH
- temperature
- DO
- ammonia/ammonium
- nitrate/nitrite
- alkalinity
- phosphate
- BOD/COD
- macronutrients: K, Ca, Mg
- micronutrients: Fe, B

essential parameters to be measured:

pH, DO, temperature, ammonia

pH – the master variable

- pH is a measure of acidity
- influences water quality parameters: e.g. % NH₃ vs. NH₄⁺
- Acceptable range for fish culture, usually pH 6.5 to pH 9.0
- Guidelines for warm water fish suggest :
 - pH<4.0 acid death point;
 - pH 4.0 5.0, no production
 - pH 6.5 9.0, desirable range for fish production,
 - pH 9.0 11.0, Slow growth,
- Plants prefer slightly acidic environments, pH 5.5 6.5
- COMPROMISE: pH 7

рН

MEASUREMENT AND FREQUENCY

Hobbyist

daily

Commercial Scale

continuous

DISSOLVED OXYGEN - DO

- Too little oxygen over prolonged periods can cause stress, disease and mortality
- Dissolved oxygen (DO) affected by temperature and salinity
- DO decreases as temperature increases
- DO decreases as salinity increases
- chronic problems with DO could be due to too much organic matter/algal growth/turbidity

DO

MEASUREMENT AND FREQUENCY

Fish need oxygen to live

Hobbyist

Commercial Scale

continuous

Ammonia, nitrate and nitrite – the N cycle

ammonia **MEASUREMENT AND FREQUENCY**

Hobbyist

Daily to weekly

Commercial Scale

nitrite

MEASUREMENT AND FREQUENCY

Hobbyist

Weekly, to monthly

Commercial Scale

Weekly, to monthly

nitrate phosphate

MEASUREMENT AND FREQUENCY

Hobbyist

Weekly, to monthly

Commercial Scale

Weekly, to monthly

Acidity, CO₂ ammonia and pH

- Tank CO₂ concentrations and pH, are affected by respiration and photosynthesis.
- As daylight progresses, the rate of photosynth uptake. This removal of CO₂ causes the pond p

- pH is highest late in the afternoon
- High waste nutrient concentrations can promote dense phytoplankton blooms which remove all of the CO₂ during photosynthesis - water to become alkaline pH > 9.0.

	Tot/NH ₃ -N	Temp		UI/NH ₃ -N	
Time	(mg/L)	°C	рН	(mg/L)	
0400 hr	2.7	28	7.0	0.019	
1600 hr	2 7	30	9.0	1.2	

Table 1. pH changes the amount of total ammonia (Tot/NH3-N) present as un-ionized ammonia-nitrogen (UI/NH3-N),

ALKALINITY

 Alkalinity buffers pH changes that occur naturally as a result of photosynthetic activity of the chlorophyll-bearing vegetation.

Components of alkalinity such as carbonate and biocarbonate will complex some toxic heavy metals and reduce their toxicity markedly

pH daily to weekly

- DO continuously/ at least daily 30 day average for adult, 7 day average for early stage
- alkalinity, weekly unless there is a chronic problem with pH/buffering, should be greater than 20mg/L CaCO₃
- ammonia/ammonium dependant on pH, T °C and life-stage
- nitrate/nitrite = none for aquatic life, but high loads can lead to eutrophication which can lead to reduced DO
- BOD/COD, usually... 6-monthly, esp if a chronic problem with DO and turbidity
- phosphate more than 100μg/L can lead to eutrophicaiton
- macronutrients: K, Ca, Mg
- micronutrients: Fe, B

Note: ammonia is pH, temperature and life-stage dependant

How often should I measure...?

Parameter	Why measure?		
рН	Master variable!!!!!		
DO	Fish need oxygen to live!		
Temperature	Optimal productivity		
Ammonia NH ₃ (unionised)/ NH ₄	Can be toxic to fish		
nitrate	Needed for plant growth		
nitrite	Can be toxic to fish		
phosphate	Needed for plant growth		
BOD	Reporting/ certification		
COD	Reporting/ certification		
Bacterial coliforms	Reporting/ certification		

- * pH
- DO
- Temperature
- ammonia/ammonium
- nitrate/nitrite
- phosphate
- alkalinity
- ♦ BOD/COD
- macronutrients: K, Ca, Mg
- micronutrients: Fe, B

* pH DO alkalinity ammonia/ammonium nitrate/nitrite BOD/COD Laboratory phosphate Laboratory macronutrients: K, Ca, Mg micronutrients: Fe, B Laboratory

WHAT ARE THE QUESTIONS?

- What are the best conditions for different fish? different plants?
- What are the best combinations?
- conversion ratios? Calculations...
- water quality vs nutrition vs resource reuse
- What are the essential parameters to be measured : pH, DO, temperature, ammonia
- Standards standards for aquaculture can be used to an extent...
- What is regulated.? How do we get there?