

CIP Eco-innovation
Pilot and market replication projects
Call 2012

Call Identifier: CIP-EIP-Eco-Innovation-2012

Report on environmental parameters D2.4 Ecoponics Contract ECO/12/332783/SI2.656985

Covering the reporting period from 23/07/2014 - 23/07/2015

Reporting Date 30/07/2015

Project coordinator: Dr. Ragnheidur Thorarinsdottir

WP2-leader: Fernando Sustaeta

Project website: http://aquaponics.is/ecoponics/

REPORT ON MASS BALANCES

This report includes the results obtained, in relation to the balance sheets of energy and mass calculation, and to the cost and life-cycle assessment (LCA) of products generated, as vegetables and tilapias.

Energy consumption

The BREEN demonstration plant uses electricity for the control systems (feed automatic system, water pumps, temperature and climatic control lights).

There is also a direct use of renewable energy and waste heat from a cogeneration system next to the demonstration plant. This energy is used to control the fish containers temperature at aprox 25°C for optimal growth rates.

<u>LIGHTING</u>

About the lighting these are the calculations performed:

LED fotoperiod lights WINTER

15 lamps of 12 Watt and are lit 8hours/day

Consumption of light: 15units x 12W x 8hours: 1440Wh/day=1.44 kWh/day, of fotoperiod light

1.44 kWh/day x 6 months: **259.20 kWh**

ELECTRICITY CONSUMPTION	kW	h/day	Quantity	kWh/ day	kWh /year
LED fotoperiod lights WINTER	0.35	8	1	1.44	259.20
LED fotoperiod lights SUMMER	0.35	0	1	0.00	0.00

PUMPS

These pumps are the pumps that are used:

Mechanical filter pump

Recirculation pump: for fish and vegetables (plants)

Return pump to plant

ELECTRICITY CONSUMPTION	kW	h/day	Quantity	kWh/ day	kWh /year
2 external water pumps (0.25HP)	0.184	9	2	3.31	1,207.24
2 external water pumps (0.25HP)	0.184	1.5	2	0.55	201.21
2 internal water pumps (0.33HP)	0.243	24	2	11.64	4,249.48

2 submarine water pumps (450W)	0.45	2	2	1.80	657.00
3 submarine water pumps (450W)	0.45	24	3	32.40	11,826.00

AERATOR

For the oxygenation of the water are used:

2.16 kWh/day of aeration, oxygenation of the water.

ELECTRICITY CONSUMPTION	kW	h/day	Quantity	kWh/ day	kWh /year
Aerator	0.09	24	1	2.16	788.40

The total 12 month period electricity consumption is about 22,400 kWh.

TABLE CALCULATION OF FEED

Fish feeding and growth

The fish has been fed during this period with Biomar, Efico Alfa 845F fish feed. The daily feeding is on average 3% of the fish biomass with a particle size of 1.5 mm, 3.0 mm and 4.5 mm depending on the fish size 4-15g, 15-60g, 60-400g.

		Temperature (°C)								
Fish size (g)	Feed – pellet size (mm)	17	19	21	23	25	27	29	31	33
8 - 15	1.9	1.77	2.66	3.40	4.25	4.67	7.64	6.78	3.50	1.54
15 - 25	1.9	1.63	2.53	3.26	4.07	4.26	7.41	6.48	3.35	1.47
25 - 35	3.0	1.58	2.38	3.16	3.95	4.17	7.10	6.39	3.25	1.43
35 - 60	3.0	1.34	2.06	2.68	3.34	3.62	5.53	4.99	2.75	1.21
60 - 100	4.5	1.23	1.85	2.46	3.08	3.31	3.63	3.20	2.53	1.12
100 - 160	4.5	1.06	1.58	2.11	2.64	2.84	2.91	2.74	2.17	0.96
160 300	4.5	0.90	1.35	1.80	2.25	2.42	2.48	2.33	1.85	0.81
300 - 400	4.5	0.76	1.14	1.52	1.90	2.04	2.09	1.97	1.56	0.69

Feeding indicative (kg feed per day for 100 kg of fish)

The total 12 month period tilapia production is about 2,000 kg.

Automatic feeding system.

Deliverable D2.4 p. 3 of 8

BROODSTOCK

100gr were bought, and this purchase suits for 3 years.

PLANT SEED

We buy the seeds in envelopes /dose.

DIRECT OUTPUT

We have calculated the productions for a period of 12 months, of 23/07/2014 - 23/07/2015

PRODUCTION IN	12 MONTH OPERATING	
FISH	Tilapia	2,000 kg
	768 lettuce (300gr/lettuce)=230kg	
	250kg tomatoes	
VEGETABLES	2kg Basil	515 kg
VEGETABLES	3kg Parsley	
	20kg Chilli pepper	
	10kg Pepper	
VERMICOMPOST	From 988kg/year of sludge, 1,25m3 of vermicompost is obtained (700 kg/m3)	875 kg

The results of this study showed the environmental impact associated with the BREEN Aquaponics technology system operation in the demonstration plant located in Hondarribia (Spain), during a 12 months period.

Deliverable D2.4 p. 4 of 8

ENVIRONMENTAL IMPACT <u>MASS ALLOCATION</u>	TOTAL	Fish 59%	Vegetables 15.2%	Vermicompost 25.8%	>>	1kg Fish	1kg Vegetables	1kg Vermicompost
Global Warming kg CO ₂ eq.	6,383.41	3,766.21	572.46	147.70	>>	1.88	1.11	0.15
Acidification kg SO ₂ eq.	51.76	30.54	4.64	1.20	>>	0.02	0.01	0.00
Fresh Water Eutrophication kg PO ₄ eq.	21.22	12.52	1.90	0.49	>>	0.01	0.00	0.00
Ozone layer destruction kg CFC-11 eq.	1.95E-04	0.00	0.00	0.00	>>	5.76E-08	3.40E-08	4.57E-09
Human Toxicity kg 1.4-DCB eq.	2.263.71	1,335.59	203.01	52.38	>>	0.67	0.39	0.05
Abiotic resource deployment kg Antimonio eq.	42.44	25.04	3.81	0.98	>>	0.01	0.01	0.00
ReCiPe Endpoint (H.A) Points	870.88	513.82	78.10	20.15	>>	0.26	0.15	0.02
Direct Electricity consumption	22,400.00	13,216.00	2,008.83	518.28	>>	6.61	3.90	0.52

This allocation shows that 1kg of fish production by the BREEN aquaponic technology produces 1.88 kg $\rm CO_2$ eq. and consumes 6.61 kWh of direct electricity.

In the case of vegetables and vermicompost, the results are 1.11 kg CO_2 eq and 0.15 kg CO_2 eq respectively and 3.9 kWh and 0.52 kWh respectively.

Price analysis for the BREEN aquaponic technology products showed a total of $9,887.50 \in$ worth of fish. Vegetables and vermicompost were produced based on current market price (<u>www.mercamadrid.es</u> . <u>www.mercasa.es</u>). Net tilapia product was worth $8,420 \in (4.21 \in \text{kg})$. Net vegetables were worth $1,030 \in (2 \in \text{kg})$ and net vermicompost was worth $437.50 \in (0.5 \in \text{kg})$.

This allocation method indicates 85.2% of net impacts are attributed to fish. 10.4% to vegetables and 4.4% to vermicompost.

ENVIRONMENTAL IMPACT ECONOMIC ALLOCATION	TOTAL	Fish 85.2%	Vegetables 10.4%	Vermicompost 4.4.%	>>	1kg Fish	1kg Vegetables	1kg Vermicompost
Global Warming kg CO2 eq.	6,383.41	5,438.67	663.87	280.87	>>	2.72	1.29	0.28
Acidification kg SO ₂ eq.	51.76	44.10	5.38	2.28	>>	0.02	0.01	0.00
Fresh Water Eutrophication kg PO4 eq.	21.22	18.08	2.21	0.93	>>	0.01	0.00	0.00
Ozone layer destruction kg CFC-11 eq.	1.95E-04	0.00	0.00	0.00	>>	8.31E-08	3.94E-08	8.69E-09
Human Toxicity kg 1.4-DCB eq.	2,263.71	1,928.68	235.43	99.60	>>	0.96	0.46	0.10
Abiotic resource deployment kg Antimonio eq.	42.44	36.16	4.41	1.87	>>	0.02	0.01	0.00

Deliverable D2.4 p. 5 of 8

ReCiPe Endpoint (H.A) Points	870.88	741.99	90.57	38.32	>>	0.37	0.18	0.04
Direct Electricity consumption	22.400.00	19.084.80	2329.60	985.60	>>	9.54	4.52	1.00

This allocation shows that 1kg of fish production by the BREEN aquaponic Technology produces 2.72 kg CO₂ eq. and consumes 9.54 kWh of direct electricity from the point of view of an economic aspect allocation.

In the case of vegetables and vermicompost, this results are 1.29 kg CO₂ eq and 0.28 kg CO₂ eq respectively, and 4.52 kWh and 1 kWh respectively.

Conclusions

No pesticides nor hormones are used in the production system. The system is closed-loop and all nutrients are fully utilized. No synthetic fertilizers are used. By implementing healthy eco-systems with polyculture even the input of extra phosphate, Fe, K and Ca can almost be excluded.

This publication has been produced with the assistance of the European Union. The contents of this publication are the sole responsibility of Svinna, Breen, IGFF and HI and can in no way be taken to reflect the views of the European Union.

Deliverable D2.4 p. 6 of 8

$CIP-EIP-Eco-Innovation-2012: Pilot \ and \ market \ replication \ projects - ID: ECO/12/332783/SI2.656985 \ EcoPonics - ID: ECO/12/332783/SI2.65698 \ Ec$

TABLE OF DIRECT INPUTS AND OUTPUTS

Deliverable D2.4 p. 7 of 8

			From 23rd July 20	14 to 23rd July20	15				
Direct inputs				(i)	Direct ou	tputs			Calculations
lement	Amount (g)	MJ/kg	Total kWh/year	Element	Amount (g)	MJ/Kg	Total MJ	Kg	
lectricity (kWh)				Tilapia	2000000	21,30	42600	2000,0	See report
ED fotoperiod lights su	mmer		0	Tomato	250000	1,13	282,5	250,0) see report
ED fotoperiod lights wi	nter		259,2	Lettuce	230000	1,13	259,9	230,0	0 see report
umps (kWh)				Basil (albahaca)	2000	1,13			see report
external water pumps			1207,2	Parsley (perejil)	3000	1,13) see report
external water pumps				Chilli Pepper	20000				O see report
internal water pumps				Pepper	10000				See report
submarine water pum	os		657,0	1.1					
submarine water pum				Vermicompost	875000	21,3	18637,5	875.0	0 988kg/year of sludge, 1,25m3 of vermicompost is obtained (700 kg
omputer (labour day)			1902,0						, , , , , , , , , , , , , , , , , , , ,
rofilux Control			1314,0						
erator			788,4						
				1 Kg-meters = 9.8	0665 Joules				
			Total MJ	2.5 11101013 310	2223 304123				
eed (g)	3000000								
ish juveniles (g)	0								
roodstock (g)	100								
lant seeds	100	22,00	-,-						
omato	800	1,13	0,9						
ettuce	500								
asil (albahaca)	1000								
arsley (perejil)	100								
arsiey (perejir)	100	1,13	0,1						