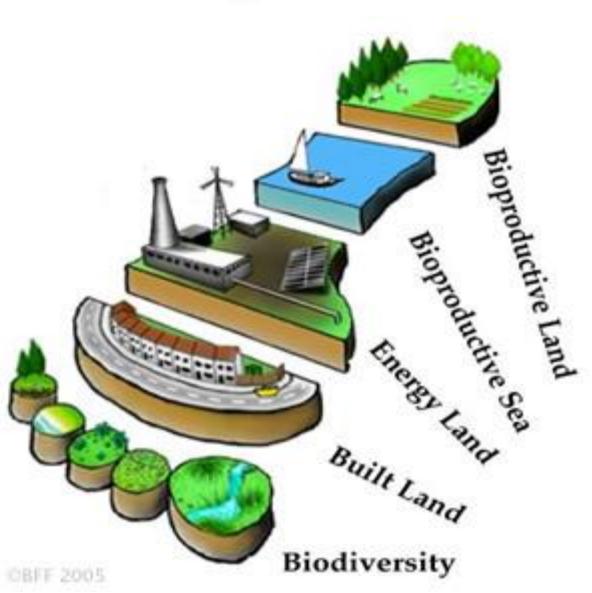


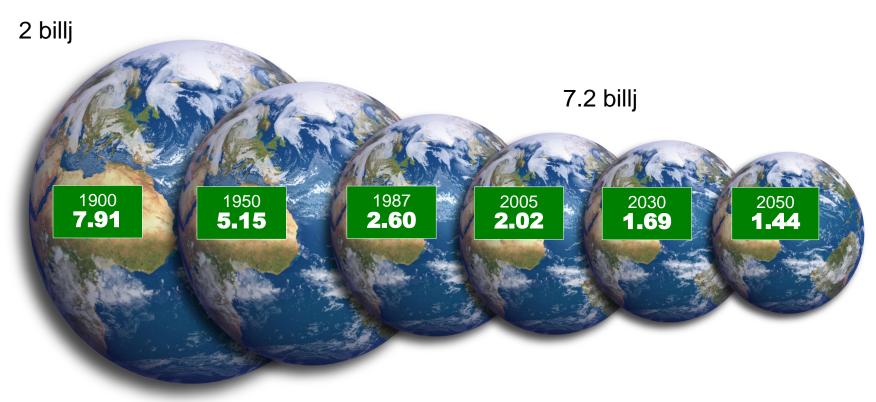
Aquaponics and Sustainability Links to Permaculture and Living Machines

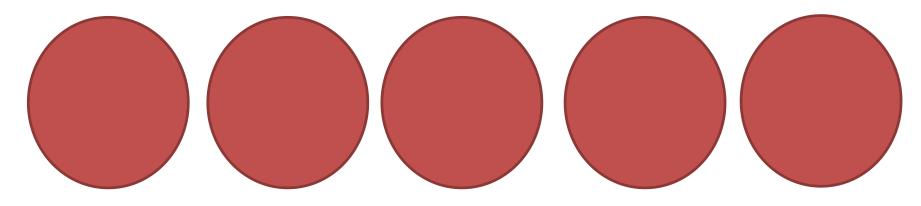
Kristín Vala Ragnarsdóttir
Professor of Sustainability Science
University of Iceland
Ecoponics and Europonics Project Meetings
Sólheimar March 25, 2014

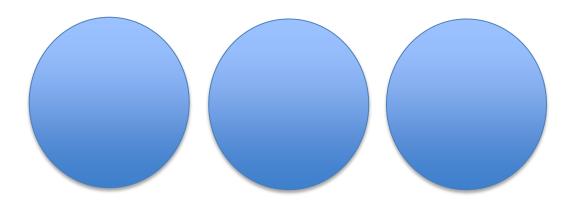

Resource depletion

- Man is a geologic force!!!
 - We move annually 10x more than nature
 - Now have biological extinction period
 - 25% of mammals endangered
 - Thousands of species become extinct every year
 - Ecosystems on land and in oceans endangered
 - In 30 years
 - We have used up 1/3 of Earth's resources!
 - Destroyed 30% of forests, lost 25% of soil, 50% of oil, 50% of phosphorous...
 - Metals are becoming scarce

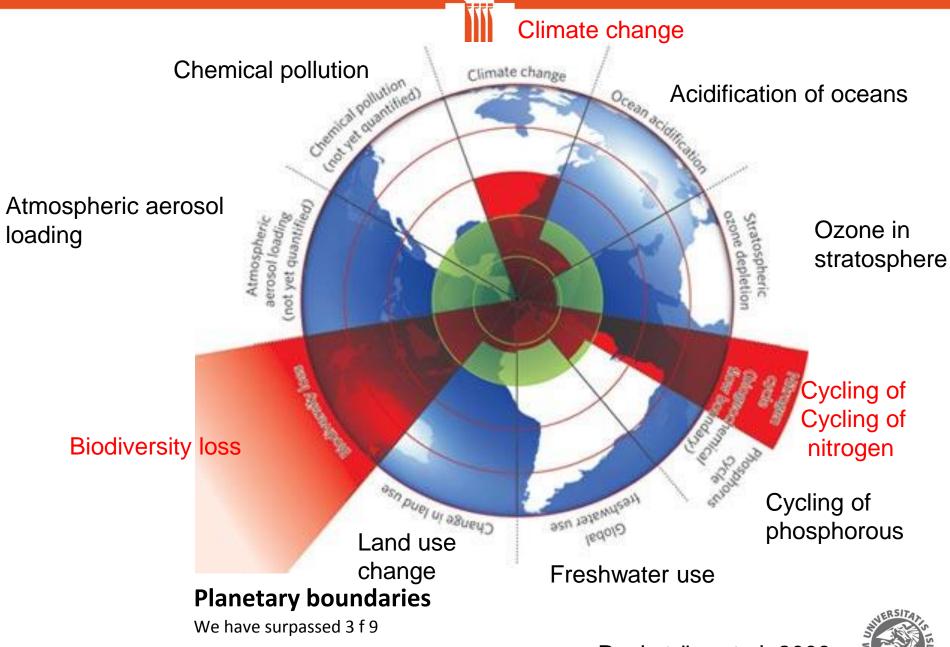
= Because of consumption


Ecological footprint

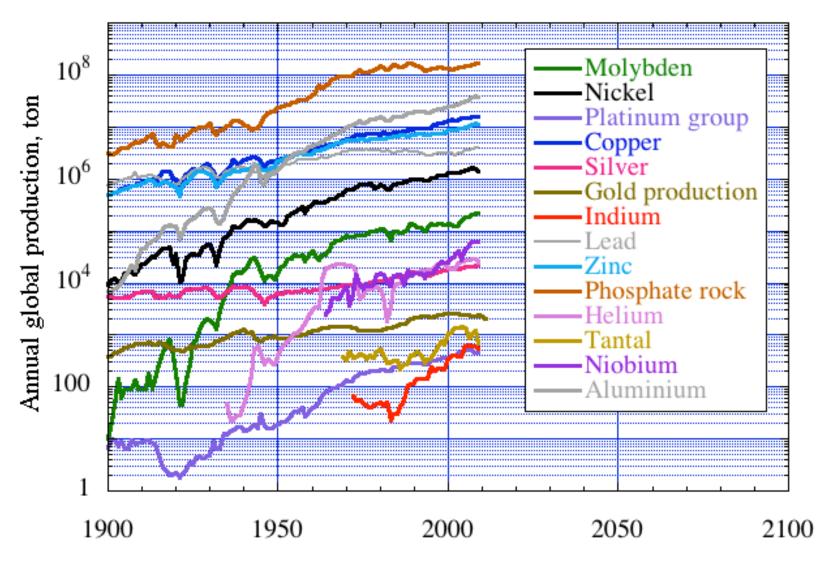

The Earth is shrinking


YEAR Hectares of surface per person

Ecological footprint = the land we need to provide daily needs and take up the waste. Now we are using 1.5 Earths per year.

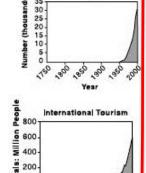

American way of life – 5 planets!

EU and Norway 3 planets!


ERSITA.

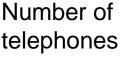
Iceland 10 Earths or 7!!

Exponential growth forever?

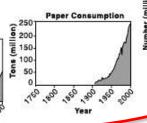


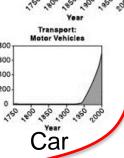
Exponential growth 1750-2000

McDonalds

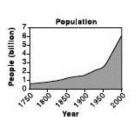


Communication: Telephones

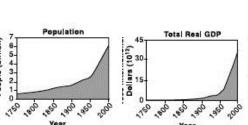

600-

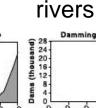

Restaurants

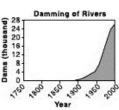
Number of telephones



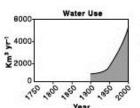
Paper consumption




transport



Polulation



GDP

Dams on

Water

use

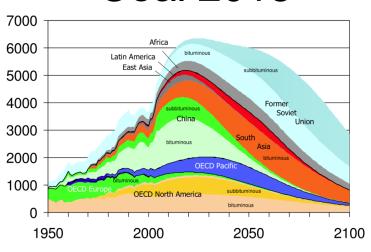
population

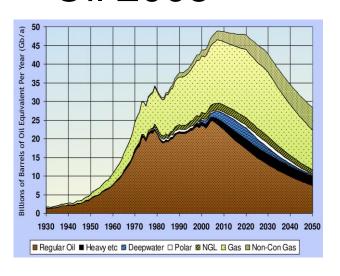
Urban

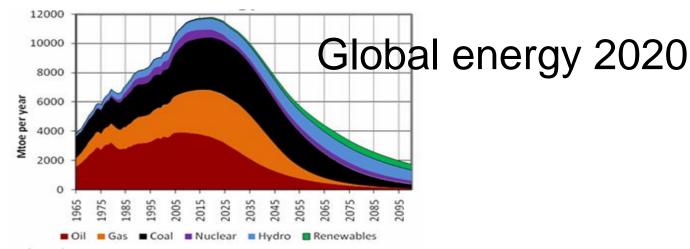
"Anyone who believes that unlimited growth is possible in a limited world is either a madman or an economist"

Kenneth Boulding Economist

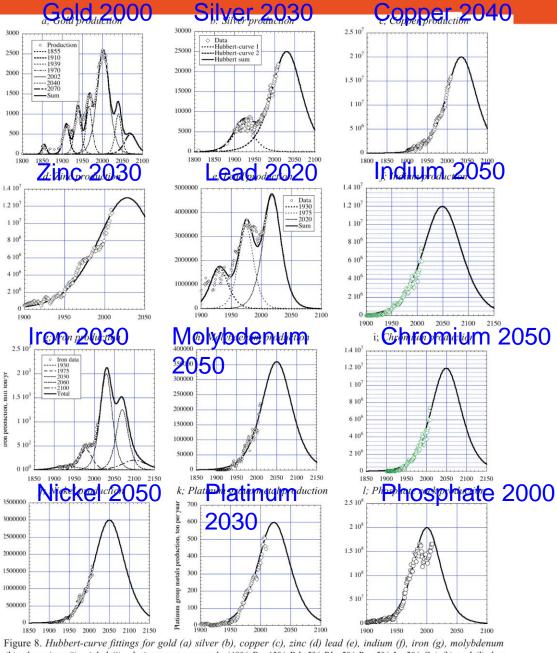
"The greatest imperfection of mankind is that it does not understand the consequences of exponential growth"


Albert Allen Bartlett Mathematician


Peak energy



Coal 2015



Oil 2005

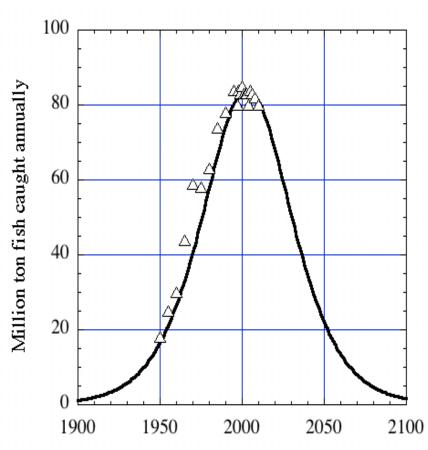
Hubberts

"peak" curves

for 12 key

metals and

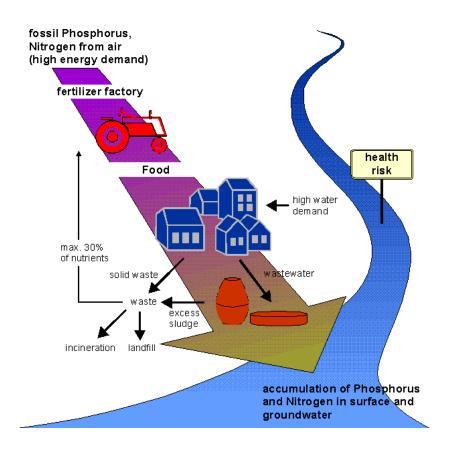

materials


Figure 8. Hubbert-curve fittings for gold (a) silver (b), copper (c), zinc (d) lead (e), indium (f), iron (g), molybdenum (h), chromium (i), nickel (j), platinum group metals (40% Pt, 43% Pd, 5% Rh, 5% Ru, 5% Ir, 2% Os) (k) and (l) that shows a one-curve phosphorus plot. We can see that the data suggest gold already passed the production peak. The scale on the Y-axis is production in ton per year, the x-axis is the year. Data: http://minerals.usgs.gov/ds/2005/140/ HASKOLIISLANDS

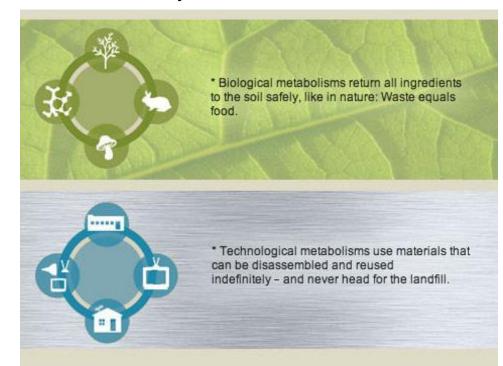
Peak tilled soil

Peak fish catch

Table 4. Outputs on Hubbert-estimates for time to scarcity. (1) Business-as-usual, (2) 50% recycling (3) recycling to									
90%, (4) recycling to 95%, (5) all recycling to 95%, population is reduced to 3 billion. (6) I recycling to 95%, assume									
one half of present per capita use, population is reduced to 3 billion.									
Element	1	2	3	4	5	6			
Bulk materials for societal infrastructures									


Element	1	2	3	4	5	6				
	_	lk materials fo				, ,				
Iron	158	254	1,285	2,574	6,007	12,014				
Aluminium	132	372	1,876	3,756	8,764	17,528				
Nickel	82	82	424	851	1,986	3,972				
Copper	61	61	317	638	1,488	2,975				
Zinc	38	72	372	748	1,745	3,490				
Manganese	35	58	306	616	1,437	2,874				
Strategic materials for technology										
Indium (Zn-dependent)	35	74	385	771	1,798	3,597				
Lithium	47	97	496	997	2,325	3,597				
Rare earths	924	1,759	8,809	17,622	41,117	82,235				
Yttrium (REE dependent)	120	616	1,235	2473	5,770	11,541				
Hafnium (Zr-dependent)	12,649	12,649	25,303	50,609	118,087	236,174				
Zirconium	133	214	1,085	2,173	5,071	10,142				
Tin	38	58	304	611	1,425	2,850				
Molybdenum	94	289	728	1,459	3,405	6,809				
Rhenium	99	99	252	507	1,183	2,365				
Lead	43	43	181	365	852	1,703				
Wolfram	62	102	523	1,049	2,447	4,894				
Cobalt	227	365	1,840	3,683	8,594	17,188				
Tantalum	346	556	2,795	5,594	13,053	26,106				
Niobium (Mo-dependent)	88	143	731	1,466	3,420	6,841				
Helium	14	32	175	353	823	1,647				
Chromium	175,000	262,000	1,310,000	2,600,000	6,100,000	12,200,000				
Gallium	1,017	1,425	7,139	14,282	33,325	66,650				
Arsenic	60	123	627	1,258	2,936	5,872				
Germanium	201	282	1,425	2,854	6,659	13,317				
Titanium	813	813	4,078	8,160	19,039	38,079				
Tellurium	784	784	3,942	7,888	18,405	36,809				
Antimony	48	68	354	711	1,658	3,317				
Selenium	422	8,500	10,600	21,200	49,600	99,200				
		Pre	cious metals							
Gold	94	94	142	725	1,693	3,385				
Silver	26	26	84	434	1,012	2,024				
Platinum	145	145	442	2,223	5,187	10,400				
Palladium	121	121	369	1,860	4,340	8,679				
Rhodium	86	86	266	1,343	3,135	6,269				
		Fossil e	nergy resou	ces						
Oil and gas	100	-	-	-	330	660				
Coal	174	-	-	-	574	1,150				
Uranium	121	240	1,215	12,184	28,400	56,900				
Thorium	379	747	3,746	37,500	87,500	175,000				
		anetary life s			<u> </u>					
Phosphorus	160	258	1,303	6,527	15,200	30,460				
			lour legend							
TTS range, years	0-100	100-200	200-1,000	1,000-2,000	2,000-10,000	>10,000				
Colour code										

Sverdrup, Koca, Ragnarsdottir 2012



From cradle to grave to cradle to cradle

Biomimicry - Cradle to cradle

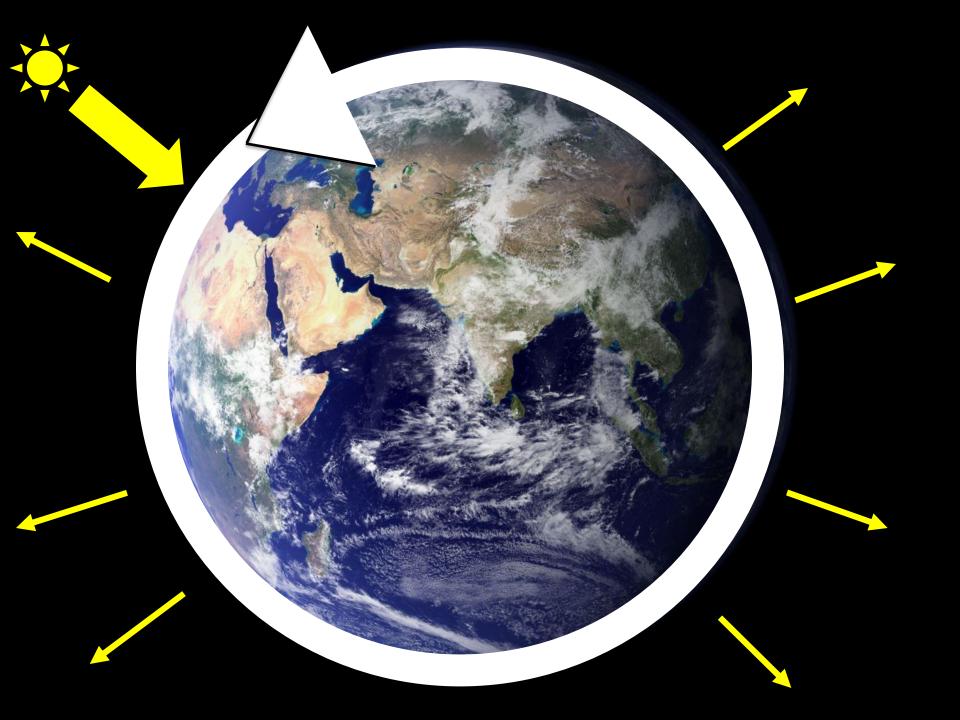
Sustainability

Sustainability is..

A set of conditions and trends in a given system that can continue indefinitely Sustainable development is..

A directed process of continuous innovation and systemic change in the direction of sustainability

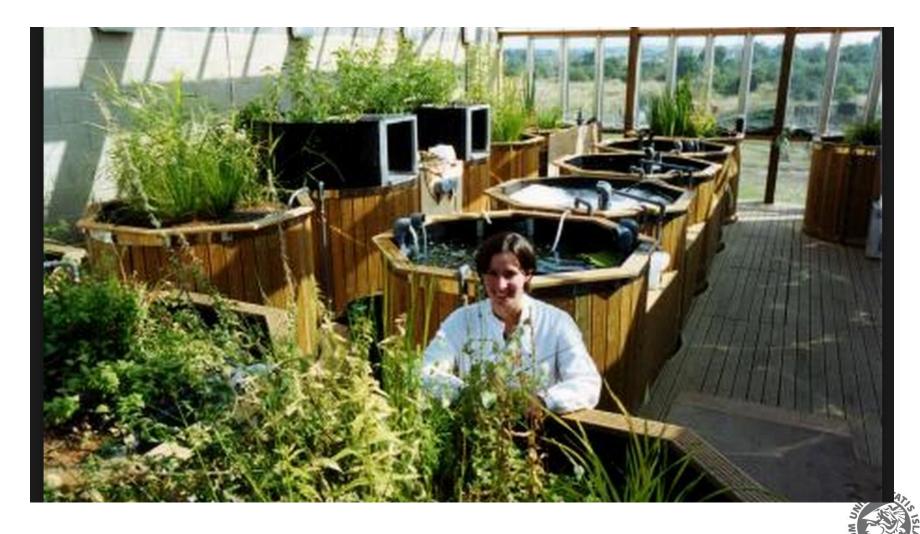
Systems and sustainability


Steps towards sustainability

- Think long term
- Understand systems
- Know limits
- Protect nature
- Change commerce
- Show equity
- Support entrepreneurship

System thinker

- Looks for the big picture
- Looks for cycles, causes and effects
- Sees how things within the system change with time
- Looks for new angles
- Investigates causes of shortterm and long-term actions
- Finds unexpected connections


Living Machine – John Todd - USA

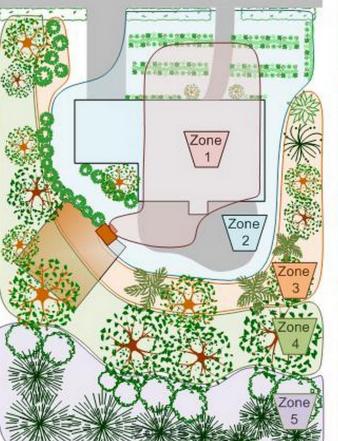
- Developed to clean water
- Series of tanks that are linked within a greenhouse
- Anaerobic and aerobic tanks
- Tanks have plants
- Sometimes fish also...

BedZED – community in London

Permaculture – Permanent agriculture

- Originated in Australia in the 1970s
 - Bill Mollison focused on the design element
 - David Holmgren focused on the ethics

- Principles of permaculture
 - http://www.youtube.com/watch?v=IT_2VVXA7SY



Zoning in Permaculture design

Farm

Garden

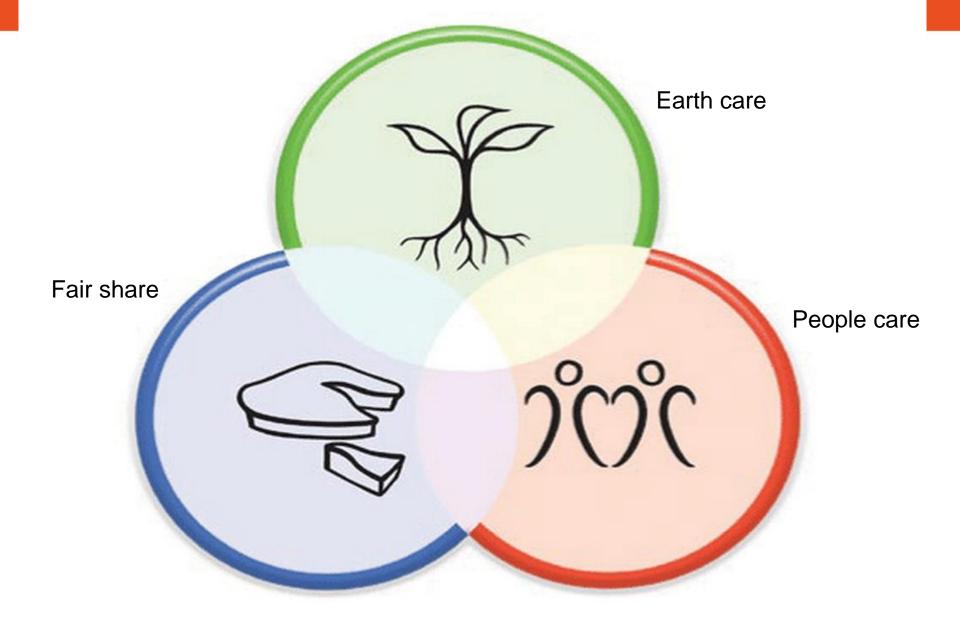
Zone 1

Every day: living areas, eggs and crops for dinner

Zone 2

Every other day: coop, house edge, berries, and garden

Zone 3


Twice a week: berries and chicken flock

Zone 4

Every week: fruit trees, chicken run

Zone 5

Every month: deer barrier & woodlot

Central to permaculture are the three ethics

Permaculture 12 Principles

2. Catch & store energy^{3.}

Make hay while the sun shines

Obtain a yield

"You can't work on an empty stomach"

 Apply self regulation è accept feedback

> "The sins of the fathers are visited on the children of the seventh generation

Use \(\xi\) value renewable resources \(\xi\) services

"Let nature take its course"

12. Creatively use & respond to change

"Vision is not seeing things as they are but as they will be"

6. Produce no waste

"A stitch in time saves nine"
"Waste not, Want not"

11. Use edges & value the marginal

1. Observe & interact

"Beauty is in the eye of the beholder"

"Don't think you are on the right track just because it's a well-beaten path"

10. Use & value diversity

"Don't put all your eggs in one basket"

Use small & slow solutions

"The bigger they are, the harder they fall"
"Slow and steady wins the race"

B. Integrate rather than segregate

"Many hands make light work"

7. Design from patterns to details

"Can't see the forest for the trees"

Permaculture flower

Permaculture petals

The seven domains of permaculture action

University of Massachusetts, Amherst

Were are these approaches used?

Living machines

- Buildings
- Communities
- Breweries

- Problem
 - Patented technology

Permaculture

- Ecovillages
- Transition Towns
- Individual citizen
- Farmers
- Open source
 - Permaculture Design Courses

- Learning from nature is a key to the future
- Aquaponics is one step in the right direction
- Good luck with all your effords!

Thank you for listening!

